An Augmented Stress-Based Mixed Finite Element Method for the Steady State Navier-Stokes Equations with Nonlinear Viscosity
نویسندگان
چکیده
A new stress-based mixed variational formulation for the stationary Navier-Stokes equations with constant density and variable viscosity depending on the magnitude of the strain tensor, is proposed and analyzed in this work. Our approach is a natural extension of a technique applied in a recent paper by some of the authors to the same boundary value problem but with a viscosity that depends nonlinearly on the gradient of velocity instead of the strain tensor. In this case, and besides remarking that the strain-dependence for the viscosity yields a more physically relevant model, we notice that to handle this nonlinearity we now need to incorporate not only the strain itself but also the vorticity as auxiliary unknowns. Furthermore, similarly as in that previous work, and aiming to deal with a suitable space for the velocity, the variational formulation is
منابع مشابه
A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).
This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...
متن کاملStochastic Galerkin methods for the steady-state Navier-Stokes equations
We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galer...
متن کاملAnalysis of Augmented Lagrangian-Based Preconditioners for the Steady Incompressible Navier-Stokes Equations
We analyze a class of modified augmented Lagrangian-based preconditioners for both stable and stabilized finite element discretizations of the steady incompressible Navier–Stokes equations. We study the eigenvalues of the preconditioned matrices obtained from Picard linearization, and we devise a simple and effective method for the choice of the augmentation parameter γ based on Fourier analysi...
متن کاملStochastic Galerkin Methods for the Steady - State
We study the steady-state Navier-Stokes equations in the context of stochastic finite element discretizations. Specifically, we assume that the viscosity is a random field given in the form of a generalized polynomial chaos expansion. For the resulting stochastic problem, we formulate the model and linearization schemes using Picard and Newton iterations in the framework of the stochastic Galer...
متن کاملA Mixed Finite Element Method on a Staggered Mesh for Navier-stokes Equations
In this paper, we introduce a mixed finite element method on a staggered mesh for the numerical solution of the steady state Navier-Stokes equations in which the two components of the velocity and the pressure are defined on three different meshes. This method is a conforming quadrilateral Q1 × Q1 − P0 element approximation for the Navier-Stokes equations. First-order error estimates are obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017